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Biology and Noise

Noise=Variability



TYPES OF NOISE

Noise can be classified as

Internal : stochastic fluctuations in the number of
protein molecules

external : fluctuations in environment and control
parameters.

Noise also classified as

phenotypic noise: leading to qualitative differences in a
cell phenotype (eg. lysis-lysogen pathway). Fluctuations
cannot always be viewed as simply small perturbations as
they can, in fact, induce different developmental pathways.

stablizable noise: leading to fluctuations in protein
concentrations (robustness properties of biological systems).



Definition of Stochasticity

| define stochasticity as randomness

*A stochastic process is one whose behavior is non-
deterministic in that a state does not fully determine its
next state

eStochasticity arises because random intermolecular
collisions make biochemical reactions stochastic

eStochasticity is enhanced by low numbers of molecules
(intrinsic) because low numbers changing by one or two
can make individual events more significant

*Genetically identical cells can behave quite different from
one another because of stochastic reactions
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Stochastic gene expression in a single cell

Double reporter construction

lac-repressible
promoter

Experiment in E. coli

no intrinsic noise, only extrinsic noise
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Stochastic kinetic analysis of a developmental pathway
bifurcation in phage-A Escherichia coli cell
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Stochasticity
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Every single step occurs in a probabilistic manner, it
does not determine the next step but it is critical for
the next step.

Minor changes in one step could affect dramatically
the final result
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STOCHASTIC EXPRESSION-1
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STOCHASTIC EXPRESSION-2
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Two models explaining the low efficiency of iPS cell generation.
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Stochastic influences on phenotype
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Noise in Gene Expression:
Origins, Consequences, and Control

Jonathan M. Raser'” and Erin K. O'Shea®"}

cortrol of noise in gene expression.

Genetically identical cells and organisms exhibit remarkable diversity even when they
have idertical histories of environmental exposure. Moise, or variation, in the process of
gene expression may contribute to this phenctypic variability. Recert studies suggest
that this noise has multiple sources, including the stochastic or inherently random nature
of the biochemical reactions of gene expression. In this review, we summarize noise
terminology and comment on recent investigations into the sources, consequences, and
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Measurement Techniques and
Definitions
Recont mvestigations have employed green
fluorescent profein (GFP) variants, which allow
the quantification of protein kevels in living cells
by flow cylometry or fluorcsoence micmscopy.
The cocfficiont of variation, ornoise, is defined
as the miio of the standard deviation io the mean
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Stochasticity requires

A means to generate noise
(e.g biochemical reactions, protein-DNA interactions)

‘Mechanisms to amplify the noise
(e.g hypersensitivity-cooperativity)

‘Mechanisms to stabilize stochastic decisions
(e.g transcription factors, epigenetics)
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ISH experiments for IEN-f mRNA
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GENOME WIDE DISTRIBUTION OF NF-kB IN THE HUMAN GENOME
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RNA/DNA FISH

Uninfected 6h post- infection
merge IEN-B RNA merge
L]
IFN-p RNA : 4
22%
»
IFN-p RNA ° @ 6.7%
-
IFN-B RNA
8.5%0
IFN-B RNA
@ 5.5%

NRCs colocalize with monoallelically expressed IFN- RNA



Triple RNA/DNA FISH
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N
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The single IFN-g allele interacting with NRCs is the one that expresses IFN-# mRNA

The stochastic choice of a single IFN-p allele for expression depends on stochastic
inter-chromosomal associations.

Hypothesis: Increased frequency of inter-chromosomal
associations should lead to an increased probability of IFN-#
expression
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Human Diploid Epithelial Cells
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HOW NRCs WORK?
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The interchromosomal associations between the IFN-£ locus and the
NRCs occur at maximal frequencies before initiation of transcription
and during enhanceosome assembly and they are significantly
reduced at the time of initiation of transcription (~6 hrs)
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NRCs facilitate IFN-p expression by mediating the
delivery of “limiting” NF-«xB to the IFN-B enhancer



However,
despite this amazing complexity, the fraction of cells
expressing these genes is always the same



However,
despite this amazing complexity, the fraction of cells
expressing these genes is always the same

thus,

stochasticity in gene expression Is
genetically determined
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