Effects of CO₂ leakages from storage sites on the quality of potable groundwater

K.A. Terzi^{1,2}, I. Bountas^{1,2} C.A. Aggelopoulos¹, C.D. Tsakiroglou¹ ¹Foundation for Research and Technology Hellas – Institute of Chemical Engineering Sciences ²Department of Chemical Engineering, Univ. of Patras 26504 PATRAS, GREECE

Capture and Storage of CO₂

- The annual emission of CO₂ has increased by 80% between 1970 and 2004, and the rate of CO₂ emission increase was much higher during the period 1995-2004 (0.92 Gt/yr) compared to the period 1970-1994 (0.43 Gt/yr)
- In order to keep the CO₂ concentration below 500 ppm and limit climatic changes, compared to the concentration level of 1990, the emissions of CO₂ must be reduced by 30% until 2020 and by 50% until 2050.
- The capture of CO₂ emissions and subsequent emplacement of supercritical CO₂ into geological media is the most well-promising technology of CO₂ sequestration. Examples of geological media: saline aquifers, depleted oil/gas reservoirs, and coal formations.
- Deep saline aquifers have a huge storability ~ 400 Gt - 10000 Gt CO₂ and the financial viability of CO₂ in such reservoirs has already been demonstrated.

Description of the problem

Apps et al., Transp. Porous Media <u>82</u>, 215-246 (2010)

$$CO_{2(g)} \leftrightarrow CO_{2(aq)}$$

$$CO_{2(aq)} + H_2O \leftrightarrow H_2CO_{3(aq)}$$

$$H_2CO_{3(aq)} \leftrightarrow HCO_{3(aq)}^- + H_{(aq)}^+$$

$$HCO_{3(aq)}^- \leftrightarrow CO_{3(aq)}^{2-} + H_{(aq)}^+$$

- CO₂ leakages from storage sites may occur through activated faults and abandoned wells
- Reduction of solution pH and groundwater / CO₂ / solid interactions may stimulate the release of hazardous trace elements (e.g. heavy metals) from the solid surface to the aqueous phase

$$MeO_{(s)} + 2H^+ \leftrightarrow Me^{2+} + H_2O$$

- High concentrations of heavy metals in potable groundwater lead to degradation of its quality
- Earlier studies have placed emphasis on batch tests and development of macroscopic (aquifer-scale) geochemical models
- There is a lack of fundamental experimental studies and mesoscopic numerical model (soil column-scale) under flow-through conditions

Presentation Outline

- Porous medium model
- Experimental Procedure
- Results and Discussion
- Supplementary batch experiments
- Numerical Model
- Conclusions

Porous Medium Model

Metal Precipitation

Scanning Electron Microscopy – Energy Dispersion Spectroscopy (SEM – EDS)

Quantitative Analysis with Atomic Absorption Spectroscopy (AAS) Flame Atomizer: *High heavy metal concentrations* Electrothermal Atomizer – Graphite Tube: *Low heavy metal concentrations*

Element	Cr	Mn	Fe	Со	Ni	Cu	Zn	Cd
mg/g- sand	0.072	0.069	0.224	0.036	0.053	0.108	0.0675	0.0725

Sand Column Properties

Characteristics						
	Column	PVC				
Construction Material	Retainers	Brass				
	Cover	Stainless steel				
Column Dimensions (Length X Diam)	40 cm x 3 cm					
Sandpack Permeability	26.5 D					
Sand Grain Sizes	125-250 μm					

Experimental Setup

Process Monitoring

Measured Variables

- Pressure drop of H₂O and CO₂ across columns
- Water saturation in CO₂ column
- 3 pH & electrical conductivity in water effluents
 - Concentrations of metal cations in water effluents
 - Metal content in sand before and after experiment

Saturation and Gas Relative Permeability Effluent pH and Electrical Conductivity

End (steady-state) gas permeability: $k_{rg}^0(S_w = 0.93) = 0.005$

Dissolved Metal Concentration

Transient variation of cation concentration in column effluent with Atomic Absorption Spectroscopy (AAS)

Metal Solubility Curves

Equilibrium cconcentration of metals dissolved from solid oxides /hydroxides as function of pH

Bradl, «Heavy Metals in the Environment», Elsevier (2005)

Residual Metals in Sand by AAS and SEM-EDS

Metal Species on Solid Surface (XPS)

X-ray photoelectron spectroscopy

++ =strong presence, + =weak presence, - =absence, T =traces

Equilibrium Batch Experiments

Batch experiments were conducted in different pH ranges (3.8 to 5) with the help of acetic acid in order to define K_d

 $S = K_d C$

$$og K_d = log K_{d0} - m(7 - pH)$$

S \rightarrow concentrations of the metals on the solid phase after desorption C \rightarrow concentrations of the metals in the aqueous phase K_d \rightarrow partition coefficient

Metals	Kd0	m	
Cr	3.3417	1.3963	
Mn	1.1868	1.0796	
Fe	0.4348	0.2575	
Со	-0.5042	0.448	
Ni	1.4945	1.1401	
Cu	5.8867	2.5633	
Zn	3.0484	1.7103	
Cd	-0.1569	0.8079	

Mathematical Model

Estimated Parameters

- a →desorption rate coefficient
 - →fraction of equilibrium of sites
- $K_{d0} \rightarrow partition coefficient$
- m → parameter m (constant)

ASSUMPTIONS

- 1) 1 Dimensional flow
- The parameters for each metal are estimated individually
- Water saturation and water/gas relative permeability remain constant
- 4) Dissolved CO₂ is at chemical equilibrium
- 5) Homogeneous distribution of the elements through the whole sand
- 6) Two-site adsorption-desorption model to describe metal mobilization

Results of Numerical Modeling

Predicted versus observed responses of metal concentration in effluent

Estimated Parameters

K_{d0} → the metal is desorbed much more easily a → the metal is desorbed much faster

Conclusions

- A flow-through experiment of the simultaneous two-phase flow of gas CO₂ and water was performed in a sand column of controlled mineralogy
- The chemical analysis of effluents was done by AAS
- The chemical characterization of sand was done by SEM-EDS and XPS
- Supplementary batch experiments were conducted to find the dependence of the partition coefficient on the pH
- pH reduction causes the selective mobilization of various metals according to the sensitivity of their solubility to pH
- Due to CO₂ dissolution, the concentration of metals in aqueous phase may increase by one order of magnitude
- A dynamic mathematical model (PDEs) was developed to describe metal release and dispersion in soil column
- The parameters estimated with inverse modeling are indicative of metal mobilization

Thank you for your attention

Acknowledgements

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek National Funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales, investing in knowledge society through the European Social Fund

Dr. L. Sygenlou is acknowledged for XPS analysis, and Dr. V. Dracopoulos for SEM-EDS analysis