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• are at the heart of physical sciences and engineering.

• capture the essential aspects of systems, processes, 

phenomena.

• are founded on universally accepted laws of physics and 

chemistry.

• are key to understanding, predicting, designing, optimizing 

and controlling.

Mathematical Models



Mathematical models in biology?

• Can biological phenotypes be explained with mathematical 
models of interacting molecules according to physical laws? 

• How does life emerge from a soup of chemicals?

• Two major challenges:
1. Biological systems are not only non-linear and often 

stochastic; they possess an overwhelming number of 
variables.

2. Biology is a discipline in history: Dobzhansky’s dictum that 
“Nothing in biology makes sense except in the light of 
evolution” casts a long shadow on mathematical models of 
phenotypic complexity.



Antimicrobial Peptides

• Promising alternative to traditional antibiotics: no bacterial resistance.

• How do they work? 

• Focus on protegrin-1. Potent against wide spectrum of bacterial 
organisms.



Antimicrobial Peptides

• Calculate the potential of mean force of binding on the membrane, of 
inserting inside the membrane, of dimerizing, oligomerizing.



Antimicrobial Peptides
• All-atom molecular dynamics simulations of protegrin pore (98,000 

atoms, 150 ns). 

• Determine the structure of the pore.

• Determine the electrostatic potential and the dielectric constant.

Mani, R. et al., Biochemistry, 

2006. 45(27): 8341-9.

Langham A, et al. , JACS, 2008, 130(13): 4338-4346



Timeline of AMP function

• Ion transport through a protegrin pore using Poisson-Nernst-Planck equations.

• Transient ion transport from bacterial cells. Collapse of transmembrane potential 
and osmotic swelling.

Bolintineanu D, et al. Peptides. 2010, 31(1):1-8



Antimicrobial Peptides
• Measured potassium release matched by models.

• Osmotic swelling observed by SEM.
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Bacterial killing kinetics

 % bacteria killed and % K+ release 

data were measured in the same 

experiment, while optical density data 

are from a different experiment.

 K+ release kinetics apparently concurrent with bacterial killing kinetics.

 Bacterial death occurs faster than osmotic swelling  this may be an overkill 

mechanism, and K+ release/T.M. potential decay the leading cause of death.

 Mathematical models can provide insight into the mechanism of action of

antimicrobial peptides. Multiscale models capture all the interactions that are

relevant to activity and provide a quantitative narrative that is useful in

designing new peptides.

Bolintineanu D, et al. Peptides. 2010, 31(1):1-8



Synthetic biology may usher a new era 
for modeling in biology

• Synthetic biology: Forward engineering of 
biological systems (beyond traditional 
genetic engineering).

• Chemical synthesis of DNA
– Inexpensive: $0.5/bp

• DNA can be cut and pasted, assembled to 
generate new functions.

• With Genome Projects toolboxes available of
– Regulatory proteins (activators and repressors)
– Operator and promoter sites
– Small inducer molecules

• Novel gene regulatory networks are at hand. 

Elowitz, Leibler, Nature, (2000)
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Mathematical Models of Synthetic Gene Networks

Synthetic biosystems may be small enough 
and sufficiently context-independent for us to 
test universal mathematical models based on 
first principles.

Adopt Jacob’s and Monod’s postulate: 
biological phenotypes, however complex, can 
be explained in terms of cascades of 
biomolecular interactions.

All interactions dictated by thermodynamics 
and kinetics.

• Protein Interactions

• Transcription

• Translation

• Regulation



Synthetic Bio-Logical AND Gate

We engineered E. coli to produce green fluorescence protein if IPTG AND 

tetracyline are added in the bacterial culture.

Images of IPTG, TC and GFP from Wikipedia

Ramalingam, et al., Biochem. Eng. J. (2009)

http://en.wikipedia.org/wiki/File:IPTG2.svg
http://en.wikipedia.org/wiki/File:Tetracycline_structure.svg
http://en.wikipedia.org/wiki/File:GFP_structure.png
http://en.wikipedia.org/wiki/Protein_Data_Bank


Synthetic Bio-Logical AND Gate



Experimental Construction of a Lac/Tet AND Gate



Flow cytometry

Hydrodynamic focusing: 

cell pass single file

Laser light source

fluorescence

Forward and 

side scattered 

light
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Synthetic Reaction Network

Reference Key: 

A. Levandowski et. al., 1996 

B. Gilbert and Müller-Hill, 1970 

C. Vogel and Jensen, 1994 

D. Sorensen and Pedersen, 1991 

E. Elowitz and Leibler, 2000 

F. Kędracka-Krok, 1999 

G. Bertrand-Burggraf et. al., 1984 

H. Stickle et. al.., 1994 996 



Chemical Kinetics Models

Represent interactions with chemical reactions.

Reaction rate laws. 

Ordinary differential equations.

Far from the thermodynamic limit. Stochastic chemical kinetics 

Master equation formalism (McQuarrie, 1949; Oppenheim, 1965; Fredrickson, 1963). 
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• Stochastic simulation algorithm (Gillespie, 1976) samples the probability distribution.

• The system may contain rare, discrete, but critical events and continuously occurring 
deterministic or stochastic transitions.

• Simulation using the SSA will be very slow. Computational time scales with the 
number of reaction occurrences .

Stochastic Simulation Algorithm

Model

• N species react through M reaction channels.

• Xi(t) is the number of molecules of species i, 
in the system at time t.

Algorithm

• Determine probability that, starting at time t, 
reaction μ, Rμ, will be the next reaction to 
occur in the interval [t+τ, t +τ+dτ]

• Execute reaction μ and propagate time.



Multiscale Modeling Framework
• I:    Discrete / Stochastic

– Jump Markov process
– Stochastic simulation algorithm 

(Gibson and Bruck, 2000)

• II:  Discrete / Stochastic
– Tau-Leaping (Cao, Petzold, 

Gillespie, 2005)
– Probabilistic steady state 

• III-IV: Continuous / Stochastic
– Valid continuous Markov process 
– Chemical Langevin equation
– (Gillespie, 2001; Haseltine and 

Rawlings, 2002)

• V:  Continuous / Deterministic
– Valid ordinary differential 

equations (Amundson, 1966)
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Multiscale Modeling Regimes
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Hy3S, Salis and Kaznessis, J.Chem. Phys. 2005



Speed Comparisons with SSA
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Ratios of Computational Run Times

System Size TSSA/TNRH

100

1000

10,000

100,000

7.94
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16912

The Cycle Test

System Size proportional to the 
number of reactant molecules of 

fast reactions

Large scale benchmark in Salis and Kaznessis J. Chem. Phys. 2005a



Accuracy: A Cycle Test
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Modeling Regimes
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Logical AND Gate Simulations

• Network with 63 reactions. Simulate a grid of 6x6 aTc-IPTG pair 
concentrations (0-200 ng/ml and 0-2mM). Simulate 1,000 
trajectories for each pair. Simulate six designs (LLT, TTL).

•Species are uniformly distributed in the cell. Initial cell volume is 10-

15 L. Cell division occurs every 30+5 minutes:  the volume doubles 
exponentially and then halves.

• Multiscale simulations including stochasticity.

•Measure GFP number of molecules for 216,000 trajectories (36,000 
CPU hours).



Stochastic simulations

IPTG=0.5 mM

aTc=10 ng/ml



Computer-Aided
Design of Bio-Logical
AND Gates

•TTL is the highest-fidelity AND 
gate.

• Leakage of lacO can explain the 
variable phenotypic behavior. 
Biological insight.

• Mathematical models 

capture experimental 

phenotype in a way fit for 

analysis and design. 
Ramalingam, Tomshine, Maynard, 

Kaznessis, Biochem. Eng. J. (2009)



• Synthetic biological systems confer advantages:

1. They are small and well-defined to be captured by universal yet tractable 
models.

2. They are modular, allowing us to build complex logical and informational 
architectures.

3. They are our designs, not nature’s, letting us avoid some of the historical 
difficulties. 

• Challenges: constants not known; molecular biology not known; assumption of 
context free system not valid.

• Can we start with a full model and reduce it to a few equations?

Computational Synthetic Biology -
www.SynBioSS.org

Tuttle, et al., Biophys. J. (2005)
Salis, Kaznessis, Phys. Biol. (2007)

Salis, et al., BMC Systems Biology, (2007)
Tomshine, Kaznessis, Biophys. J. (2006)

Sotiropoulos, Kaznessis, BMC Systems Biology, (2007)
Kaznessis, Biotechnology Journal, (2009)

Weeding, et al., Briefings in Bioinformatics (2010)

Sotiropoulos, et al., IEEE/ACM Trans Comput Biol Bioinform. (2009)



Reduced Models for Synthetic Biology

29

By reducing the model a relatively simple model (15 reactions, 9 components) can be 

determined with more complex reaction rate equations. Use in microbial community 

models



Hysss - SynBioSS

hysss.sourceforge.net

www.SynBioSS.org
• Tool for generation, curation and 

simulation of synthetic biological 
networks. Three components:
– Designer: Reaction network 

generation for arbitrary synthetic 
construct

– Wiki: Kinetic data storage/retrieval. 
Community driven effort

– Desktop Simulator: Numerical 
simulation with multiscale
algorithms

• Goal
– Directly connect DNA sequences 

with dynamic phenotypes

Hill, et al. Bioinformatics, (2008)
Salis, et al. BMC Systems Biology, (2007)



Molecular Models: TetR-TetO binding

• Determine the free energy of binding between the 
repressor and its cognate DNA sequence.

• Determine the change of the binding strength upon 

mutation.

Name Sequence
Reporter 

activity* (%)

∆∆G=∆G4-

∆G3

kcal/mol

Wild type TCCCTATCAGTGATAGAGA 0 0

M3 TCCCTAACAGTGTTAGAGA 52 -7.76

M4 TCCCTTTCAGTGAAAGAGA 2 -2.91

M6 TCCGTATCAGTGATACAGA 20 -6.6
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Zwanzig, R. W. J. Chem. Phys. (1954) 



How does life emerge from a soup of chemicals?

(biological systems) defined by three major features 

(Jacques Monod, Nobel Prize Medicine, 1976):

1. Reproductive invariance

2. Autonomous morphogenesis

3. Teleonomy

• Atoms, molecules

• Life

• Pairwise interactions

• Networks of biomolecular interactions

• Informational and logical architectures

(Paul Nurse, Nobel Prize Medicine, 2001)

• Development, differentiation, metabolism, immune 

responses, etc.



Computational mathematics enhance the unaided human brain in two major ways:

1. Extrapolation, related to innate human computing capacities. 

2. Augmentation, past innate human computing abilities. Augmentation can be considered as 

an important shift in human abilities.

With extrapolation and augmentation, high-performance computing provides access to 

tractable mathematics and solutions previously inaccessible to the human brain.. 

With results attainable only with computer simulations, the foundation can be solidly laid for 

mathematical models that capture and explain biological phenomena (Humphreys: 

“Extending Ourselves”.

Images from http://www.stanleylondon.com/tele13prem.htm and http://iacl.ece.jhu.edu/projects/pdf/

The role of high-performance computing

http://www.stanleylondon.com/tele13prem.htm
http://iacl.ece.jhu.edu/projects/pdf/
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