Synthesizing Complex Microparticles Using Microfluidic Devices

2009 Stratis V. Sotirchos Memorial Lectureship

Prof. Patrick S. Doyle Department of Chemical Engineering Massachusetts Institute of Technology web.mit.edu/doylegroup

Rothschild-Mayant Fellow Institut Curie

mechanical properties

microparticle complexity space

shape

patterned regions

aspect ratio

compatibility

responsive

Fundamental Studies of Complex Particles

Self Assembly

Solomon and Glotzer, Nat. Mater. (2007)

3

Flow & Rheology

Advanced Applications

Medical Diagnostics

Pregibon, Toner and Doyle, Science (2007)

Drug Delivery

Champion and Mitragotri, PNAS (2006)

Tissue Engineering

Khademhosseini, Vacanti, Langer, Scientific American (2009)

Chen et al., Nature (2003)

4

Non-spherical particles (custom designed)

Dendukuri et al., Langmuir 2005 Xu et al. Angew Chem. Int. Ed. 2005

Badaire et al. JACS 2007

Hernandez & Mason JPC 2007

Kawata et al., Nature 2000

Plif

Chemically patterned particles

Synthesis Phase Space

Doyle and Dendukuri, Adv. Mat. (2009), in press

7

(re)Discovery...

~ 100 microns

free floating

hydrogel

repeatable

Continuous Flow Lithography

Dendukuri et al., Nat. Mater. (2006)

Plii

Real-time Synthesis of Tubes

Transparency 50 μm OD mask

Objects forming and flowing

Photopolymerization Chemistry

- Several types We use free-radical chemistries • Acrylate and methacrylate groups UV light initiated (365 nm) **Mechanism** (Initiator (I), Monomer (M)) $| + hv \rightarrow |^*$ initiation chain $I^* + M \rightarrow M-M...-M-M$ propagation $I^* + O_2 \rightarrow I^*OO$ retardation Single acrylate - linear chain ۲
- Multiple acrylate cross-linking leading to quick solidification
- PEG biologically friendly

Pliī

Mechanism

Dendukuri et al., Macromolecules (2008)

Stop Flow Lithography

Dendukuri et al., Lab on a Chip. (2007)

Stop Flow Lithography

Dendukuri et al., Lab on a Chip. (2007)

Process Attributes

Scalebar: 10 μm

- One-phase (easy to use)
- Transparency masks
- Can use with any free radical polymerization
- Monodisperse (CV<2%)
- Automated Process
- Any extruded 2-D shape
- Incorporated desired chemistry in monomer
 - (Fe₂O₃, quantum dots, dyes etc.)

Particle Production Rate

Estimates using only microscope projection lithography ~1mm² UV spot size

Elastohydrodynamics

SFL Co-Flow Multiple Streams

Dendukuri et al., Langmuir (2006)

"Colloidal Surfactants"

Hydrophilic: PEGDA

Hydrophobic: TMPTA

Barcoded microparticles for multiplexed biomolecule analysis

Pregibon, Toner, Doyle, Science 2007

Molecular Diagnostics

Using DNA and RNA to detect, monitor, or understand disease.

Drug discovery: 1,000s of targets, 1,000s of samples/day Neonatal Diagnostics: ~3,000 of targets, 1,000s of samples/day *In vitro* Cancer Diagnostics: 100s – 1,000s targets, 1,000s of samples/day *Multiplexing* = detecting many targets in one sample

Multiplexing

Definition – Detection of multiple targets using single test

Benefits – Maximize info with minimal sample, time and cost

Difficulties – Accuracy, need to encode for each target

Our interest – Medical Applications:

DNA — Proteins

- Genetic profiling
 - Disease susceptibility
- Diagnostics
 - Foreign Material, Ab against

Plii

Current Approaches: Microarrays

Encoding

- Spatial on planar surface
- Each probe for specific target at different location

Functionalization

- Molecules spotted (DNA, proteins, RNA)
- Photopatterning (DNA only)

Cost

- Capital ~ \$300K
- Cost per test ~ \$100 \$1,000

Info "Density"

- Order(10,000)

Sample Throughput

- Low (few)

Current Approaches: Cytometry

Encoding

- Multiple fluorophores at precise blends

xMAP, Luminex ®

Functionalization

- Chemistries to attach biomolecules to bead surfaces
- Detection via fluorescence

Sample Throughput

- High (~100)

Cost

- Capital ~ \$30K
- Per test ~ \$100?

- <100

Application of SFL to Multiplexing?

SFL Provides: Ideal For:

- Any extruded 2D shape —> Graphical barcode
- Multiple adjacent
 Spatial separation of
 code, probes
- Choice of any free Bio-inert, porous radical reacting polymers
 Bio-inert, porous surfaces (PEG)

State-of-the-Art Screening Technologies

Bottom Line: - Beads are better than arrays - Gels are better than solids! - No technology can efficiently provide medium-density!

PliT

Barcoded Hydrogel Microparticles Advantages over existing planar arrays

- Hydrated scaffold environment provides near-solution binding kinetics
- Probe-set modifications can be made easi
- Efficient mixing and washing
- Redundancy increases data quality

D.C. Pregibon Thesis (2008)

ADVANTAGES OVER EXISTING PARTICLE-BASED ARRAYS

- -Extensive code library (>3000)
- -Single-color fluorescence for easier detection/decoding
- -Highly tunable particle properties (porosity, flexibility, probe density)

Encoded Hydrogel Particles

(Pregibon, Toner, Doyle. Science, 2007.)

Our Particle Motif

Testing a Sample (DNA example)

Sensing with Single-Probe Particles

- Library of particles with barcode corresponding to target
- Short 10min incubation
- Particles show great specificity
- Very reproducible

l'liī

Sensing with Multi-Probe Particles

- Single particle contains several probes – provides an even higher level of multiplexing
- Control built into EVERY particle quality of information
- No loss of specificity

Lock-Release Lithography

Reconstruction RSC Publishing BP depending of encodentiation BP depending of encodentiation

K.W. Bong, D. Pregibon & Doyle, P.S.

Lab on Chip, 9, 863-866, 2009

Basic concept: leverage flexible walls

Extent of deformation depends on pressure

$$\Delta h_{\max} = C_1 \frac{P(z)W}{E}$$

Sampling of quasi-3D particles....

Sort of cool, but not the full story.....

PliT

Lock for multiple cycles, then release

Complex patterns can be created...

Fabricating Ceramic Microcomponents Using SFL

Shepherd et al., Adv. Mater. (2008)

Engineered Colloidal Granules and Microcomponents

Electronic "paper"

Chen et al., Nature (2003)

Functionally graded ceramics

Wing et al., J. Am. Ceram. Soc. (2006)

Pharmaceuticals

MEMs

R. Rao et al., Adv. Mater. (2005)

Colloidal System for SFL

Component	Chemical	Concentration
Monomer	acrylamide	<i>φ</i> _a =0.10
Crosslinker	N,N-methylene bisacrylamide	φ _c =0.2φ _a
Photoinitiator	Darocur 1173	<i>φ</i> _i =0.04
Colloids	RITC core-shell silica, ~500 nm diameter	φ _s =0.50

Concentrated colloid-acrylamide suspensions are index-matched in a mixture of DMSO-water to enhance polymerization rate

Uniform Packing

ШiГ

dry

Sintered Silica Gears

1150 C 1 hour, *φ* ~ 0.77

l'lliī

AFM: rms = 130*nm*

1150 C 10 hours, *φ* ~ 1

AFM: rms = 6nm

Conversion to Silicon

Plii

mechanical properties

responsive

compatibility

microparticle complexity space

cargo-bearing

shape

patterned regions

aspect ratio