Combustion-synthesized LiMn-based spinel nanostructures as cathode materials for lithium-ion batteries

Pinelopi Angelopoulou1,2, Fotios Paloukis2, George Avgouropoulos1

1 Department of Materials Science, University of Patras, 26504 Patras, Greece
2 Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), P.O. Box 1414, 26504 Patras, Greece

Research Highlights

- Combustion-synthesized Li-Mn spinel-based cathode nanostructures
- Nanorods resulted in better electrochemical behavior vs. bulk commercial spinels
- Doping with Cu and Al ions further improved the insertion/extraction process of Li
- Exceptional stability obtained at high rates
- Li$_{1.068}$Al$_{0.099}$Mn$_{1.901}$O$_4$ nanostructure showed the highest electrochemical reversibility